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STABILITY OF THE CONTROL OF A PLANE TURN OF A SPACECRAFT*
S.A. AGAFONOV, K.B. ALEKSEYEV and N.V. NIKOLAYEV

A method of extensive control based on a closed scheme is discussed, and
the possibility of constructing a stabilizing momentum ensuring the
asymptotic stability of the programmed motion of a spacecraft is proved.

The method of reorienting a non-symmetric spacecraft at rest by means of a single turn
in a plane about a fixed axis, is called extensive /1/ and yields a payoff in high-speed
action and in energy consumption. The problems of constructing optimal control programs
based on the above method for various specific functionals were solved in /2-4/. The in=
stability of the resulting program solutions however reduces their practical value.

1. Let us introduce two coordinate systems with a common origin at the centre of mass
of the craft, the inertial system X;X,X; and the system =22, rigidly connected with the
craft. We assume that at the initial instant (¢=0) the.corresponding axes of the systems
coincide, and the required reorientation of the craft is executed by its rotation about an
axis whose direction is given by the unit vector
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where vy are the direction cosines, ¢ and # are unit vectors of the aXes Xy and &z, with
the angle of rotation ¢,<n given. The motion of the craft about the centre of mass is
described by Euler's equations, which have the following form when the axes a (k=1,2,3)
coincide with the principal axes of inertia:

Loy' -+ Iy — 1) 008 = M; (t23) (t.1)

Here I, are the principal moments of inertia of the craft, o and M; are projections
of the vectors e and M of angular velocity and the external force moment respectively onto
the axes zx(t=1,2,3), and a prime denotes a derivative with respect to time. Using the
Rodriques-Hamilton parameters /5/ to determine the orientation, we obtain the kinematic
equatians in the form

24y = —oh; — Oghg — @shy (1.2)
2%y = kg + @ghg — Gghy (1 23)

Egs.{1.1) and {1.2) together form a complete system of equations for sclving the problem
of controlling the turn of the spacecraft.
Programmed controlusing an open scheme is carried out under the assumption that the
angular velocity vector of the craft coincides with the given direction of the ~ axis:
® = v == Qv (1.3)
where o () is the angular velocity and o¢{ is the angle of rotation at the instant ¢.
Taking into account (1.3}, we obtain the following expression for the vector of the programmed
control force moment:
J.9"e, + Jﬁm”eﬁ =M (1.4)
The unit vectors e, and e; introduced here as well as the parameter J, and Jg, are
given in terms of the inertial tensor I as follows:

Jo=IIv], Jﬁ:[vxlvl, e, = IvfJ,, e5=vxlv/.lf3

Thus, if the function ¢t of programmed change in the angle of rotation is known, the
vector of control of the force moment can be found from {1.4).

2. The programmed rotational motion of the craft is unstable with respect to the initial
perturbations, therefore the plane rotation can be controlled using a closed scheme. When
external information concerning the running angular position and angular velocity of the craft
is available, the control can be constructed by comparing the programmed motion with the
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actual motion. In this case the basic problem will consist of choosing a technically
realizable structure of the stabilizing moment, beginning with the requirement to ensure the
asymptotic stability of the programmed motion. To solve this problem we denote the parameters
of the actual motion of the craft by a* (t), A*(t), and in this case we shall have

ot = o () + U, ok (=0 () vx @1

A% = (ho*, M* ha* As*),  A* =R+ &
M* = A+ By My* =My +my, k=1,2,3

where Q, &, & are the perturbations, oy, Ay Ax, My are the programmed values of the com-
ponents of the angular velocity, quaternion, and control moment, and my (k=1,2,3) are the
components of the required stabilizing force moment. Substituting expressions (2.1) into
Eq.{1.1) and (1.2), we obtain the following equations of perturbed motion:

Ly + (I3 — In) (0vsQs + ovals -+ QaQs) = my (1 2 3) (2.2)
28y = — vid; sin % — vaQs sin % — vgQs sin % — @ (Vi1 - vela + vsEa) —
Q8 — Qaba — ks
281" = 1 08 5~ + 4y sin —3- — vsQa 5in g~ -+ @ (il + voba — vaks) -+
Dt | Qafa — ks (1 2 3)

We shall assume that the components of the stabilizing force moment are linear functions
of the perturbations of kinematic parameters

mp = —y0g — &Q (k=1,2,3) 2.3)
where 1y, 8 are positive constants and 6x is the angular deviation of the programmed motion
from the actual motion. We will express the perturbation of the angular position 8 =0, +

0,5 + Ogis using the quaternions of the programmed motion A and perturbed motion A* — A
of the vector part of their quaternion product

0 = vect (A; — Ag) o A (2.4)

where A; and A; are the quaternions conjugated, respectively, with A and A*. Taking the
relations (2.1) into account we obtain 6, and substituting the values of 8; into (2.3) we
obtain the following expressions for the stabilizing moments:

my=— y(- viEy sin —92-)——— t1 cos % + wvsEasin —%—— vaBssin %’-) —8 (123 (2.5)

Let us consider the positive-definite function
V = (LQ + Qs + L:Q5%)/2 + v (B -+ &* + &' + &) (2.8)
The time derivative of the function (2.6), by virtue of the system (2.2) taking (2.5)
into account, has the form

V= —8;Q.2 — 85057 — 8,032 — (I, — I) v0Q,Q, + 2.7
(Iy — I3) vo0Q,Qq — (Iz — I3) v, 0R,Q4

Assuming, without any loss of generality, that I, >71,>I; we can reduce the condition
of constant negativity of the function (2.7) to a single ineguality

8:8085 — Yy (Iy — Iy) (Iy — Tg) ¢l ~ Tg)vyvavaom® — Yy (I} — I3)? 9?0305 — (2.8)
g Iy — T2 vaton s — Yy (I3 — 130 vitay?, >0
Oy = MaxX,,, | @ [GX

When the inequality (2.8) holds, the unperturbed motion
Op = @ (t) Vg, by = €08 9/2, Ay = vy sin @/2
will be stable with respect to @, &, & (¢ =1,2,3). We shall show that it is asymptotically
stable. With this purpose in mind, we shall consider another function

W= 1,Q1y%; + IQs%a + IsRsXs (2.9)
15 = — Ercos -3 + (vika + vaba — vaka) sin o~ (1 2 3)

The time derivative of the function (2.9) is equal on the set (V'=0:9, =0, k= 1, 2,3,
by virtue of system (2.2), to
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W=y (0® + %+ x?) (2.10)
We note that the perturbations &, & (v=1,2,3) satisfy the equation
Bo? -k B2 EgEs® + B2+ 28, cos /2 + 2(vE, + w8, + vaEg) sin /2 = 0 (2.11)
We shall show that W' is a positive definite function of the variable &, &. The
equation W’'=0 1is equivalent to the system
Y11= Yz= %a= 0 (2.12)

If the function o () 1is such that

t
w(@=0, ¢0=0, cprvgm(t)dr
0

and ¢ (2 does not approach m infinitely closely on some interval 0<{t<(¢, then expressing
B (k=1,2,3) in terms of §, from the system (2.1) according to the formulas

Ex = v tg (9/2) (2.13)
and substituting expressions (2.13) into (2.11), we obtain
o sec? (¢p/2) (§p -+ 2cos (¢/2)) = 0

The above expression implies £, =0, and from (2.13) we have § = 0 (k= 1,2, 3). The
function ¢ (t), in some interval #<{t<(t,, takes the values from a sufficiently small
neighbourhood of m. 1In this case we can use system (2.12) to express £, &.,% in terms of

S E, = Eactg (@/2)vg, & = viEa/vs, B2 = valalvs (2.14)
Substituting expressions (2.14) into (2.11), we obtain
E5 cosee (9/2) (Eg cosec (9/2) + 2) = 0
The above relation implies that §&;=0, and (2.14) implies that §;=§ =E,=0. By
virtue of Theorem 1.2 of /6/ the unperturbed motion is asymptotically stable with respect to
the variables Qi & & (k= 1,2,3) when the inequality (2.8) holds.
The results obtained establish the possibility in principle of constructing an  asymp-

totically stable closed system of controlling plane rotations when the programmed motion is
assumed known.
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