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STABILITY OF THE CONTROL OF A PLANE TURN OF A SPACECRAFT* 

S.A. AGAFONOV, K.B. ALEKSEYEV and N.V. NIKOLAYEV 

A method of extensive control based on a closed scheme is discussed, and 
the possibility of constructing a stabilizing momentum ensuring the 
asymptotic stability of the programmed motion of a spacecraft is proved. 

The method of reorienting a non-symmetric spacecraft at rest by means of a single turn 
in a plane about a fixed axis, is called extensive /l/ and yields a payoff in high-speed 
action and in energy consumption. The problems of constructing optimal control programs 
based on the above method for various specific functionals were solved in /2-4/. The in- 
stability of the resulting program solutions however reduces their practical value. 

1. Let us introduce two coordinate systems with a common origin at the centre of mass 
of the craft, the inertial system X,X,X, and the system =,=a?+ rigidly connected with the 
craft. We assume that at the initial instant (t= 0) the-corresponding axes of the systems 
coincide, and the required reorientation of the craft is executed by its rotation about an 
axis whose direction is given by the unit vector 

3 3 

v- B Vkek= BVkik 
k=l krl 

where YE are the direction cosines, pa and ik are unit vectors of the axes Xx and ~11, with 
the angle of rotation eO<s given. The motion of the craft about the centre of mass is 
described by Euler's equations, which have the following form when the axes q (k= 1,2,3) 
coincide with the principal axes of inertia: 

I,w,’ + (I, - I,) o*o.q = M, (1 2 3) 0.1) 

Here I~ are the principal moments of inertia of the craft, ox and Mk are projections 
of the vectors e and I&of angular velocity and the external force moment respectively onto 
the axes zk (k= i,2,3), and a prime denotes a derivative with respect to time. Using the 
Rodrigues-Hamilton parameters /5/ to determine the orientation, we obtain the kinematic 
equations in the form 

2h,' = -e,l,- W&J - o&s (1.2) 
W,' = Cl& + o&-- @,A, (4 2 3) 

Egs.(l.l) and (1.2) together form a complete system of equations for solving the problem 
of controlling the turn of the spacecraft. 

Programmed controlusing an open scheme is carried out under the assumption that the 
angular velocity vector of the craft coincides with the given direction of the Y axis: 

0 = ov = 'p'v (1.3) 

where oft) is the angular velocity and e{(t) is the angle of rotation at the instant t. 
Taking into account (1.31, we obtain the following expression for the vector af the programmed 
control force moment: 

J,c&-+Jkpt'bR==M (1.4) 

The unit vectors e, and ep introduced here as well as the parameter J, and JB, are 
given in terms of the inertial tensor I as follows: 

J,= IIv[, JP"lVXIVI, ea = Iv/J,, ep = v x ‘V/J@ 

Thus, if the function 8 (0 of programmed change in the angle of rotation is known, the 
vector of control of the force moment can be found from f1.4). 

2. The programmed rotational motion of the craft is unstable with respect to the initial 
perturbations, therefore the plane rotation can be controlled using a closed scheme. When 
external information concerning the running angular position and angular velocity of the craft 
is available, the control can be constructed by comparing the programmed motion with the 
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actual motion. In this case the basic problem will consist of choosing a technically 
realizable structure of the stabilizing moment, beginning with the requirement to ensure the 
asymptotic stability of the programmed motion. To solve this problem we denote the parameters 
of the actual motion of the craft by e*(t), A*(t), and in this case we shall have 

Ok* = ok (t) + pk. % (f) - 0 (t) VR (2.1) 

A’ = (a,*, hl*, in’, 53’). IO’ = 5 + E. 

hk* = Rk + Ek, Mk* = hfk + “8k, k = 1, 2, 3 

where ok> to, Sk are the perturbations, ok, &,, kk, Mk are the programmed values of the com- 
ponents of the angular velocity, quaternion, and control moment, and mk (k= i, 2,3) are the 
components of the required stabilizing force moment. Substituting expressions (2.1) into 
Eq.(l.l) and (1.2), we obtain the following equations of perturbed motion: 

I,Pi +(I,- I,) (ovsPa+OYPs+Q*Q%) = ml (1 2 3) (3.3) 

2&,' = - v& sin + - vrQt sin f - v3Qa sin + - 0 (VIEI + v&a + V&s) - 

s2,El - P&a - B&s 

25,'= PICOS$- B + v&sin ~-v&2 sin + + 0 (v& + vsb - v&s) + 

Q&J + 93% - Q&3 (1 2 3) 

We shall assume that the components of the stabilizing force moment are linear functions 
of the perturbations of kinematic parameters 

mh.=-$k-6$& (k=l,2,3) (2.3) 

where v,& are positive constants and 6k is the angular deviation of the programmed motion 
from the actual motion. We will express the perturbation of the angular position e = Cl,!, + 
e,i, + l&is using the quaternions of the programmed motion A and perturbed motion A’ - A 
of the vector part of their quaternion product 

e = vect (A, - ‘A,)0 A (3.4) 

where A1 and Al are the quaternions conjugated, respectively, with A and A*. Taking the 
relations (2.1) into account we obtain 0, and substituting the values of 8k into (2.3) we 
obtain the following expressions for the stabilizing moments: 

(3.5) 

Let us consider the positive-definite function 

v = (I&,* + z,C@+ I&,3)/3 + y (EaBf bBf V+flsa) (3.3) 

The time derivative of the function (2.6), by virtue of the system (2.2) taking (2.5) 
into account, has the form 

Assuming, without any loss of generality, that I,>I,>IS, we can reduce the condition 
of constant negativity of the function (2.7) to a single inequality 

&6,6, - '1, (I, - Ia) (I, - I,)(I, -- r,)Y,v,v,o,a - ‘I, (I, - I,)2 v,QOmYi, - (3.3) 
'la (I, - I,)= Vs=llJ","63 - 114 (I, - I,)2 v,=wm.as, > 0 

oln = ma+)1 w WI 

When the inequality (2.8) holds, the unperturbed motion 

ok = 0 (t)Yk, h, = c0s e/3, hk = Yk ain (p/2 

will be stable with respect to Q,,&,& (k= 1,2,3). We shall show that it is asymptotically 
stable. With this purpose in mind, we shall consider another function 

w= r&xl + ~&X*f I&& (3.9) 

xt = -bcos+ + (v& + v&-v&) sin+ (1 2 3) 

The time derivative of the function (2.9) is equal on the set 
by virtue of system (2.2), to 

(V' = 0: Rk = 0, k = 1,2,3), 
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W' = y (Xl% + xzz -!- x?) (2.10) 

We note that the perturbations 50, fk (k 7 1, 2,3) satisfy the equation 

Eo" + 512+E&a + Ez'+ X0 Cos 912 + 2(y15, + VP& + v&) sin 912 = 0 (2.ll) 

We shall show that W' is a positive definite function of the variable 50, tk. The 
equation W’= 0 is equivalent to the system 

x, = l(z = xs = 0 (2.12) 

If the function o (t) is such that 

, 
0 (0) = 0, ‘p (0) = 0, ‘p S’o(r)dr 

” 

and 'p (t) does not approach n infinitely closely on some interval O< l<t,, then expressing 
5~@=1,2,3) in terms of E0 from the system (2.1) according to the formulas 

Sk = &I t!3 (rp/2) (2.13) 

and substituting expressions (2.13) into (2.11), we obtain 
go set* @p/2)(& + 2cos (iJJi2)) = 0 

The above expression implies 50 = 0, and from (2.13) we have & = o (k= i,2,3). The 
function 'p (f) # in some interval t1 < t < tz , takes the values from a sufficiently small 
neighbourhood of n. In this case we can use system (2.12) to express &,.&,E1 in terms of 
53: & = 53 ctg (@)Jvz. 5, = v&a/v,* 52 = &I% (2.14) 

Substituting expressions (2.14) into (2.11), we obtain 

52 coscc ($2) (62 CDSeC (rfJ/Z)$- 2)= 0 

The above relation implies that &- 0, and (2.14) implies that &= &= &= 0. By 
virtue of Theorem 1.2 of /6/ the unperturbed motion is asymptotically stable with respect to 
the variables G,, 50, Sk (k = 1, 2, 3) when the inequality (2.8) holds. 

The results obtained establish the possibility in principle of constructing an asymp- 
totically stable closed system of controlling plane rotations when the programmed motion is 
assumed known. 
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